After work about 2 nights ago my skin looked like it had little splotches of red... The next morning I woke up and my hands felt like they were asleep... all day. And today my entire arm is getting covered in redish areas that are starting to itch... and my hands still feel prickly like they are asleep.|||probably not just a skin condition, sorry :S go to a doctor ASAP please! tingling suggests circulation difficulties, or nerve damage, or any number of things that a doctor can test you for. Good luck :P...oh where do you work? that may have something to do with it....|||Hi Matt, it could be an allergic skin reaction, try to think if you came into contact with something different. If not, it could by systemic, meaning that you have something going on inside the body that is now coming out as a rash/numbness. I work at a derm office, and a lot of times they will culture the rash for scabies or skin infection, or if it indicates something more, you might have to have a blood test. I would think that if it doesn't get any better by tomorrow, I would call your doctor and see what they think. Good luck|||Click on the link below. There are questions and answers concerning rashes. Whether you answer a question with yes or no, it will lead to to further questions and answers until you can get a generalized diagnosis. It does not replace medical attention, though. Hope you feel better soon.
http://familydoctor.org/545.xml
Saturday, April 24, 2010
Looking for cause of skin rash on my hands..?
I have very small lumps under the skin on my fingers, they are pale in colour and not itchy or painful. Also have been experiencing periodic numbness in my fingers. If anyone can help with a possible cause?|||Go to a doctor, I would be guessing and that would not help you.|||I just answered this , so i will answer again ... possibly warts and carpel tunnel syndrome , contact your GP ...|||me no help either, with stuff like this u really need to see yr doc, i have studied skin conditions, but you really need some1 to look at it, so many skin allergies n lumps n bumps r very similar, i wldnt go on a guess, i wld get it looked at, good luk !
Why do i get skin rash in the heat?
when i am in the sun outdoors i get a rash all over my body. it itches a lot too|||It is called heat rash. Try using body powder. This may help.|||it's called heat rash. use sunscreen and/or wear loose clothing that covers your skin. also, drink plenty of water and don't spend too much time in the sun. try an antibiotic topical cream to treat it like you would any other rash. if it's an continuing problem, you should probably see a dermatologist.|||Heat rash|||Heat rash -- also called prickly heat or miliaria -- is a common condition in which areas of the skin itch intensely and often feel prickly, or sting, due to overheating. Heat rash looks like tiny bumps surrounded by a zone of red skin. It usually occurs on clothed parts of the body, such as the back, abdomen, neck, upper chest, groin or armpits and goes away on its own within a few days. In severe forms, however, heat rash can interfere with the body's heat-regulating mechanism .
Heat rash occurs most often in hot, humid conditions, but you may develop it in cool weather if you are overdressed. It's most common in infants.
Heat rash begins with excessive perspiration, usually in a hot, humid environment. The perspiration damages cells on the surface of the skin, forming a barrier and trapping sweat beneath the skin, where it builds up, causing the characteristic bumps. As the bumps burst and sweat is released, you may feel the prickly, or stinging, sensation that gives this condition its common name.|||You could be allergic to the sun. Sounds weird but there are people who are, typically it effects people with very light skin.|||I agree with blushlila...you could well be allergic
to the sun. Do you start feeling itchy and a burning
sensation the minute you step out in the sun?
If you are not allergic to the sun then try the other
suggestions-using baby powder, etc. You can also
try appling a deoderant in any creases on your body
where sweat accumulates.
Heat rash occurs most often in hot, humid conditions, but you may develop it in cool weather if you are overdressed. It's most common in infants.
Heat rash begins with excessive perspiration, usually in a hot, humid environment. The perspiration damages cells on the surface of the skin, forming a barrier and trapping sweat beneath the skin, where it builds up, causing the characteristic bumps. As the bumps burst and sweat is released, you may feel the prickly, or stinging, sensation that gives this condition its common name.|||You could be allergic to the sun. Sounds weird but there are people who are, typically it effects people with very light skin.|||I agree with blushlila...you could well be allergic
to the sun. Do you start feeling itchy and a burning
sensation the minute you step out in the sun?
If you are not allergic to the sun then try the other
suggestions-using baby powder, etc. You can also
try appling a deoderant in any creases on your body
where sweat accumulates.
My daughter has a skin rash?
My daughter who is 1 has bumps all over her body. The bumps look much like chill bumps (the bumps that you get when you get cold). The doc said it was because she has strep throat. She's took 2 kinds of med for it but it never clears up and she still test positive for strep. The rash has been there for about 3 weeks .Anyone knows whats going on?|||You're asking this in the wrong section... and of the wrong people. Get an opinion from a different doctor... get a few opinions, in fact.
[][][] r u randy? [][][]
.|||Soz I'd love to help u but I'm not a doctor|||wish i can help try another section that fits with this question
[][][] r u randy? [][][]
.|||Soz I'd love to help u but I'm not a doctor|||wish i can help try another section that fits with this question
Can vitamin b12 cause skin rash?
the rash is on just my face|||I notice the previous respondant gave you a whole crapload of information, and yet did not answer the question!
My husband is a doctor with a great deal of nutritional training, and he says it's unlikely.|||What is vitamin B12?
Vitamin B12 is also called cobalamin because it contains the metal cobalt. This vitamin helps maintain healthy nerve cells and red blood cells [1-4]. It is also needed to help make DNA, the genetic material in all cells [1-4].
Vitamin B12 is bound to the protein in food. Hydrochloric acid in the stomach releases B12 from proteins in foods during digestion. Once released, vitamin B12 combines with a substance called gastric intrinsic factor (IF). This complex can then be absorbed by the intestinal tract.
What foods provide vitamin B12?
Vitamin B12 is naturally found in animal foods including fish, meat, poultry, eggs, milk, and milk products. Fortified breakfast cereals are a particularly valuable source of vitamin B12 for vegetarians [5-7]. Table 1 lists a variety of food sources of vitamin B12.
Table 1: Selected food sources of vitamin B12 [5]
FoodMicrograms (μg)
per serving Percent
DV*
Mollusks, clam, mixed species, cooked, 3 ounces 84.11400
Liver, beef, braised, 1 slice47.9780
Fortified breakfast cereals, (100%) fortified), ¾ cup6.0100
Trout, rainbow, wild, cooked, 3 ounces5.490
Salmon, sockeye, cooked, 3 ounces4.980
Trout, rainbow, farmed, cooked, 3 ounces4.250
Beef, top sirloin, lean, choice, broiled, 3 ounces2.440
Fast Food, Cheeseburger, regular, double patty %26amp; bun, 1 sandwich1.930
Fast Food, Taco, 1 large1.625
Fortified breakfast cereals (25% fortified), ¾ cup1.525
Yogurt, plain, skim, with 13 grams protein per cup, 1 cup1.425
Haddock, cooked, 3 ounces1.220
Clams, breaded %26amp; fried, ¾ cup1.120
Tuna, white, canned in water, drained solids, 3 ounces1.015
Milk, 1 cup0.915
Pork, cured, ham, lean only, canned, roasted, 3 ounces0.610
Egg, whole, hard boiled, 10.610
American pasteurized cheese food, 1 ounces0.36
Chicken, breast, meat only, roasted, ½ breast0.36
*DV = Daily Value. DVs are reference numbers developed by the Food and Drug Administration (FDA) to help consumers determine if a food contains a lot or a little of a specific nutrient. The DV for vitamin B12 is 6.0 micrograms (μg). Most food labels do not list a food's vitamin B12 content. The percent DV (%DV) listed on the table indicates the percentage of the DV provided in one serving. A food providing 5% of the DV or less is a low source while a food that provides 10-19% of the DV is a good source. A food that provides 20% or more of the DV is high in that nutrient. It is important to remember that foods that provide lower percentages of the DV also contribute to a healthful diet. For foods not listed in this table, please refer to the U.S. Department of Agriculture's Nutrient Database Web site: http://www.nal.usda.gov/fnic/cgi-bin/nut...
What is the recommended dietary intake for vitamin B12?
Recommendations for vitamin B12 are provided in the Dietary Reference Intakes (DRIs) developed by the Institute of Medicine of the National Academy of Sciences [7]. Dietary Reference Intakes is the general term for a set of reference values used for planning and assessing nutrient intake for healthy people. Three important types of reference values included in the DRIs are Recommended Dietary Allowances (RDA), Adequate Intakes (AI), and Tolerable Upper Intake Levels (UL). The RDA recommends the average daily intake that is sufficient to meet the nutrient requirements of nearly all (97-98%) healthy individuals in each age and gender group [7]. An AI is set when there is insufficient scientific data available to establish a RDA. AIs meet or exceed the amount needed to maintain a nutritional state of adequacy in nearly all members of a specific age and gender group [7]. The UL, on the other hand, is the maximum daily intake unlikely to result in adverse health effects [7]. Table 2 lists the RDAs for vitamin B12, in micrograms (μg), for children and adults.
Table 2: Recommended Dietary Allowances (RDA) for vitamin B12 for children and adults [7]
Age
(years)Males and Females
(μg/day) Pregnancy
(μg/day)Lactation
(μg/day)
1-30.9N/AN/A
4-81.2N/AN/A
9-131.8N/AN/A
14-182.42.62.8
19 and older2.42.62.8
There is insufficient information on vitamin B12 to establish a RDA for infants. Therefore, an Adequate Intake (AI) has been established that is based on the amount of vitamin B12 consumed by healthy infants who are fed breast milk [7]. Table 3 lists the Adequate Intakes for vitamin B12, in micrograms (μg), for infants.
Table 3: Adequate Intake for vitamin B12 for infants [7]
Age
(months)Males and Females
(μg/day)
0-6 months0.4
7-12 months0.5
When is a deficiency of vitamin B12 likely to occur?
Results of two national surveys, the National Health and Nutrition Examination Survey (NHANES III-1988-94) [8] and the Continuing Survey of Food Intakes by Individuals (CSFII 1994-96) found that most children and adults in the United States (U.S.) consume recommended amounts of vitamin B12 [6-8]. A deficiency may still occur as a result of an inability to absorb B12 from food and in strict vegetarians who do not consume any animal foods [9]. As a general rule, most individuals who develop a vitamin B12 deficiency have an underlying stomach or intestinal disorder that limits the absorption of vitamin B12 [10]. Sometimes the only symptom of these intestinal disorders is subtly reduced cognitive function resulting from early B12 deficiency. Anemia and dementia follow later [1,11].
# Signs, symptoms, and health problems associated with vitamin B12 deficiencyCharacteristic signs, symptoms, and health problems associated with B12 deficiency include anemia, fatigue, weakness, constipation, loss of appetite, and weight loss [1,3,12].
# Deficiency also can lead to neurological changes such as numbness and tingling in the hands and feet [7,13].
# Additional symptoms of B12 deficiency are difficulty in maintaining balance, depression, confusion, dementia, poor memory, and soreness of the mouth or tongue [14].
# Signs of vitamin B12 deficiency in infancy include failure to thrive, movement disorders, delayed development, and megaloblastic anemia [15].
Many of these symptoms are very general and can result from a variety of medical conditions other than vitamin B12 deficiency. It is important to have a physician evaluate these symptoms so that appropriate medical care can be given.
Do pregnant and/or lactating women need extra Vitamin B12?
During pregnancy, nutrients travel from mother to fetus through the placenta. Vitamin B12, like other nutrients, is transferred across the placenta during pregnancy. Breast-fed infants receive their nutrition, including vitamin B12, through breast milk. Vitamin B12 deficiency in infants is rare but can occur as a result of maternal insufficiency [15]. For example, breast-fed infants of women who follow strict vegetarian diets have very limited reserves of vitamin B12 and can develop a vitamin B12 deficiency within months of birth [7,16]. This is of particular concern because undetected and untreated vitamin B12 deficiency in infants can result in permanent neurologic damage. Consequences of such neurologic damage are severe and can be irreversible. Mothers who follow a strict vegetarian diet should consult with a pediatrician regarding appropriate vitamin B12 supplementation for their infants and children [7]. They should also discuss their own need for vitamin B12 supplementation with their personal physician.
Who else may need a vitamin B12 supplement to prevent a deficiency?
# Individuals with pernicious anemia or with gastrointestinal disorders may benefit from or require a vitamin B12 supplement.
# Older adults and vegetarians may benefit from a vitamin B12 supplement or an increased intake of foods fortified with vitamin B12.
# Some medications may decrease absorption of vitamin B12. Chronic use of those medications may result in a need for supplemental B12.
Individuals with pernicious anemia
Anemia is a condition that occurs when there is insufficient hemoglobin in red blood cells to carry oxygen to cells and tissues. Common signs and symptoms of anemia include fatigue and weakness. Anemia can result from a variety of medical problems, including deficiencies of vitamin B12, vitamin B6, folate and iron. Pernicious anemia is the name given more than a century ago to describe the then-fatal vitamin B12 deficiency anemia that results from severe gastric atrophy, a condition that prevents gastric cells from secreting intrinsic factor. Intrinsic factor is a substance normally present in the stomach. Vitamin B12 must bind with intrinsic factor before it can be absorbed and used by your body [7,17-18]. An absence of intrinsic factor prevents normal absorption of B12 and results in pernicious anemia.
Most individuals with pernicious anemia need parenteral (deep subcutaneous) injections (shots) of vitamin B12 as initial therapy to replenish depleted body B12 stores. Body stores of vitamin B12 can then be managed by a daily oral supplement of B12. A physician will manage the treatment required to maintain the vitamin B12 status of individuals with pernicious anemia.
Individuals with gastrointestinal disorders
Individuals with stomach and small intestinal disorders may be unable to absorb enough vitamin B12 from food to maintain healthy body stores [19]. Intestinal disorders that may result in malabsorption of vitamin B12 include:
* Sprue, often referred to as Celiac Disease (CD), is a genetic disorder. People with CD are intolerant to a protein called gluten. In CD, gluten can trigger damage to the small intestines, where most nutrient absorption occurs. People with CD often experience nutrient malabsorption. They need to follow a gluten free diet to avoid malabsorption and other symptoms of CD.
* Crohn's Disease is an inflammatory bowel disease that affects the small intestines. People with Crohn's disease often experience diarrhea and nutrient malabsorption.
* Surgical procedures in the gastrointestinal tract, such as surgery to remove all or part of the stomach, often result in a loss of cells that secrete stomach acid and intrinsic factor [7,20-21]. Surgical removal of the distal ileum, a section of the intestines, also can result in the inability to absorb vitamin B12. Anyone who has had either of these surgeries usually requires lifelong supplemental B12 to prevent a deficiency. These individuals would be under the routine care of a physician, who would periodically evaluate vitamin B12 status and recommend appropriate treatment.
Older adults
Gastric acid helps release vitamin B12 from the protein in food. This must occur before B12 binds with intrinsic factor and is absorbed in your intestines. Atrophic gastritis, which is an inflammation of the stomach, decreases gastric secretion. Less gastric acid decreases the amount of B12 separated from proteins in foods and can result in poor absorption of vitamin B12 [10,22-26]. Decreased gastric secretion also results in overgrowth of normal bacterial flora in the small intestines. The bacteria may take up vitamin B12 for their own use, further contributing to a vitamin B12 deficiency [27].
Up to 30 percent of adults 50 years and older may have atrophic gastritis, an overgrowth of intestinal flora, and be unable to normally absorb vitamin B12 in food. They are, however, able to absorb the synthetic B12 added to fortified foods and dietary supplements. Vitamin supplements and fortified foods may be the best sources of vitamin B12 for adults over the age of 50 [7].
Researchers have long been interested in the potential connection between vitamin B12 deficiency and dementia [28]. A recent review examined correlations between cognitive skills, homocysteine levels, and blood levels of folate, vitamin B12 and vitamin B6. The authors suggested that vitamin B12 deficiency may decrease levels of substances needed for the metabolism of neurotransmitters [29]. Neurotransmitters are chemicals that transmit nerve signals. Reduced levels of neurotransmitters may result in cognitive impairment. In 142 individuals considered at risk for dementia, researchers found that a daily supplement providing 2 milligrams (mg) folic acid and 1 mg B12, taken for 12 weeks, lowered homocysteine levels by 30%. They also demonstrated that cognitive impairment was significantly associated with elevated plasma total homocysteine. However, the decrease in homocysteine levels seen with vitamin supplementation did not improve cognition [30]. It is too soon to make any recommendations, but is an intriguing area of research.
Vegetarians
The popularity of vegetarian diets has risen along with an interest in avoiding meat and meat products for environmental, philosophical, and health reasons. However, the term vegetarianism is subject to a wide range of interpretations. Some people consider themselves to be vegetarian when they avoid red meat. Others believe that vegetarianism requires avoidance of all animal products, including meat, poultry, fish, eggs, and dairy foods. The most commonly described forms of vegetarianism include:
# "Lacto-ovo vegetarians", who avoid meat, poultry, and fish products but consume eggs and dairy foods
# "Strict vegetarians", who avoid meat, poultry, fish, eggs, and dairy foods
# "Vegans", who avoid meat, poultry, fish, eggs, and dairy foods but also do not use animal products such as honey, leather, fur, silk, and wool
Strict vegetarians and vegans are at greater risk of developing vitamin B12 deficiency than lacto-ovo vegetarians and non-vegetarians because natural food sources of vitamin B12 are limited to animal foods [7]. Fortified cereals are one of the few sources of vitamin B12 from plants, and are an important dietary source of B12 for strict vegetarians and vegans. Strict vegetarians and vegans who do not consume plant foods fortified with vitamin B12 need to consider taking a dietary supplement that contains vitamin B12 and should discuss the need for B12 supplementation with their physician.
There is wide belief that vitamin B12 can be consistently obtained from nutritional yeasts. Consumers should be aware that these products may or may not contain added nutrients such as vitamin B12. Dietary supplements are regulated as foods rather than drugs, and companies that sell supplements such as nutritional yeasts fortified with vitamin B12 can legally change their formulation at any time. If you choose to supplement, select reliable sources of vitamin B12 and read product labels carefully.
When adults adopt a strict vegetarian diet, deficiency symptoms can be slow to appear. It may take years to deplete normal body stores of B12. However, breast-fed infants of women who follow strict vegetarian diets have very limited reserves of vitamin B12 and can develop a vitamin B12 deficiency within months [7]. This is of particular concern because undetected and untreated vitamin B12 deficiency in infants can result in permanent neurologic damage. Consequences of such neurologic damage are severe and can be irreversible. There are many case reports in the literature of infants and children who suffered consequences of vitamin B12 deficiency. It is very important for mothers who follow a strict vegetarian diet to consult with a pediatrician regarding appropriate vitamin B12 supplementation for their infants and children [7].
Drug : Nutrient Interactions
Table 4 summarizes several drugs that potentially influence vitamin B12 absorption.
Table 4: Important vitamin B12/drug interactions
DrugPotential Interaction
# Proton Pump Inhibitors (PPIs) are used to treat gastroesophageal reflux disease (GERD) and peptic ulcer disease. Examples of PPIs are Omeprazole (Prilosec©) and Lansoprazole (Prevacid©)
PPI medications can interfere with vitamin B12 absorption from food by slowing the release of gastric acid into the stomach [31-33]. This is a concern because acid is needed to release vitamin B12 from food prior to absorption. So far, however, there is no evidence that these medications promote vitamin B12 deficiency, even after long-term use [34].
# H2 receptor antagonists are used to treat peptic ulcer disease. Examples are Tagament©, Pepsid©, and Zantac©
H2 receptor antagonists can interfere with vitamin B12 absorption from food by slowing the release of gastric acid into the stomach. This is a concern because acid is needed to release vitamin B12 from food prior to absorption. So far, however, there is no evidence that these medications promote vitamin B12 deficiency, even after long-term use [34].
# Metformin© is a drug used to treat diabetes.
Metformin© may interfere with calcium metabolism [35]. This may indirectly reduce vitamin B12 absorption because vitamin B12 absorption requires calcium [35]. Surveys suggest that from 10% to 30% of patients taking Metformin© have evidence of reduced vitamin B12 absorption [35].
In a study involving 21 subjects with type 2 diabetes, researchers found that 17 who were prescribed Metformin© experienced a decrease in vitamin B12 absorption. Researchers also found that supplementation with calcium carbonate (1200 milligrams per day) helped limit the effect of Metformin© on vitamin B12 absorption in these individuals [35].
Although these medications may interact with the absorption of vitamin B12, they are necessary to take for certain conditions. It is important to consult with a physician and registered dietitian to discuss the best way to maintain vitamin B12 status when taking these medications.
Caution: Folic Acid and vitamin B12 deficiency
Folic acid can correct the anemia that is caused by vitamin B12 deficiency. Unfortunately, folic acid will not correct the nerve damage also caused by B12 deficiency [1,36]. Permanent nerve damage can occur if vitamin B12 deficiency is not treated. Folic acid intake from food and supplements should not exceed 1,000 micrograms (μg) daily in healthy individuals because large amounts of folic acid can trigger the damaging effects of vitamin B12 deficiency [7]. Adults older than 50 years who take a folic acid supplement should ask their physician or qualified health care provider about their need for vitamin B12 supplementation.
What is the relationship between vitamin B12 homocysteine, and cardiovascular disease?
Cardiovascular disease involves any disorder of the heart and blood vessels that make up the cardiovascular system. Coronary heart disease occurs when blood vessels which supply the heart become clogged or blocked, increasing the risk of a heart attack. Vascular damage can also occur to blood vessels supplying the brain, and can result in a stroke.
Cardiovascular disease is the most common cause of death in industrialized countries such as the U.S., and is on the rise in developing countries. The National Heart, Lung, and Blood Institute of the National Institutes of Health has identified many risk factors for cardiovascular disease, including an elevated LDL-cholesterol level, high blood pressure, a low HDL-cholesterol level, obesity, and diabetes [37]. In recent years, researchers have identified another risk factor for cardiovascular disease, an elevated homocysteine level. Homocysteine is an amino acid normally found in blood, but elevated levels have been linked with coronary heart disease and stroke [38-47]. Elevated homocysteine levels may impair endothelial vasomotor function, which determines how easily blood flows through blood vessels. High levels of homocysteine also may damage coronary arteries and make it easier for blood clotting cells called platelets to clump together a form a clot, which may lead to a heart attack [43].
Vitamin B12, folate, and vitamin B6 are involved in homocysteine metabolism. In fact, a deficiency of vitamin B12, folate, or vitamin B6 may increase blood levels of homocysteine. Recent studies found that supplemental vitamin B12 and folic acid decreased homocysteine levels in subjects with vascular disease and in young adult women. The most significant drop in homocysteine level was seen when folic acid was taken alone [48-49]. A significant decrease in homocysteine levels also occurred in older men and women who took a multivitamin/ multimineral supplement for 56 days [50]. The supplement taken provided 100% of Daily Values (DVs) for nutrients in the supplement.
Evidence supports a role for supplemental folic acid and vitamin B12 for lowering homocysteine levels, however this does not mean that these supplements will decrease the risk of cardiovascular disease. Clinical intervention trials are underway to determine whether supplementation with folic acid, vitamin B12, and vitamin B6 can lower risk of coronary heart disease. It is premature to recommend vitamin B12 supplements for the prevention of heart disease until results of ongoing randomized, controlled clinical trials positively link increased vitamin B12 intake from supplements with decreased homocysteine levels AND decreased risk of cardiovascular disease.
Do healthy young adults need a vitamin B12 supplement?
It is generally accepted that older adults are at greater risk of developing a vitamin B12 deficiency than younger adults. One study, however, suggests that the prevalence of B12 deficiency in young adults may be greater than previously thought. This study found that the percentage of subjects in three age groups (26 to 49y, 50 to 64y, and 65y and older) with deficient blood levels of vitamin B12 was similar across all age groups but that symptoms of B12 deficiency were not as apparent in younger adults. This study also suggested that those who did not take a supplement containing vitamin B12 were twice as likely to be B12 deficient as supplement users, regardless of age group. However, non-supplement users who consumed fortified cereal more than 4 times per week did appear to be protected from deficient blood levels of B12. Better tools and standards to diagnose B12 deficiencies are needed to make specific recommendations about the appropriateness of vitamin B12 supplements for younger adults [51].
What is the health risk of too much vitamin B12?
The Institute of Medicine of the National Academy of Sciences did not establish a Tolerable Upper Intake Level for this vitamin because Vitamin B12 has a very low potential for toxicity. The Institute of Medicine states that "no adverse effects have been associated with excess vitamin B12 intake from food and supplements in healthy individuals" [7]. In fact, the Institute recommends that adults over 50 years of age get most of their vitamin B12 from vitamin supplements or fortified food because of the high incidence of impaired absorption of B12 from animal foods in this age group [7].
Selecting a healthful diet
As the 2000 Dietary Guidelines for Americans states, "Different foods contain different nutrients and other healthful substances. No single food can supply all the nutrients in the amounts you need" [52]. For more information about building a healthful diet, refer to the Dietary Guidelines for Americans http://www.usda.gov/cnpp/DietGd.pdf [52] and the US Department of Agriculture's Food Guide Pyramid http://www.nal.usda.gov/fnic/Fpyr/pyrami... [53].
Office of Dietary Supplements logo
NIH Clinical Center logo
About ODS and the NIH Clinical Center
General Safety Advisory
Disclaimer
Print-friendly version
Posted Date:
10/7/2004
Updated:
5/25/2005 6:31 PM
References
1. Herbert V. Vitamin B12 in Present Knowledge in Nutrition. 17th ed. Washington, D.C.: International Life Sciences Institute Press, 1996.
2. Herbert V and Das K. Vitamin B12 in Modern Nutrition in health and disease. 8th ed. Baltimore: Williams %26amp; Wilkins, 1994.
3. Combs G. Vitamin B12 in The Vitamins. New York: Academic Press, Inc, 1992.
4. Zittoun J and Zittoun R. Modern clinical testing strategies in cobalamin and folate deficiency. Sem Hematol 1999;36:35-46. [PubMed abstract]
5. U.S. Department of Agriculture, Agricultural Research Service. 2003. USDA Nutrient Database for Standard Reference, Release 16. Nutrient Data Laboratory Home Page, http://www.nal.usda.gov/fnic/cgi-bin/nut...
6. Subar AF, Krebs-Smith SM, Cook A, Kahle LL. Dietary sources of nutrients among US adults, 1989 to 1991. J Am Diet Assoc 1998;98:537-47. [PubMed abstract]
7. Institute of Medicine. Food and Nutrition Board. Dietary Reference Intakes: Thiamin, riboflavin, niacin, vitamin B6, folate, vitamin B12, pantothenic acid, biotin, and choline. National Academy Press. Washington, DC, 1998.
8. Bialostosky K, Wright JD, Kennedy-Stephenson J, McDowell M, Johnson CL. Dietary intake of macronutrients, micronutrients and other dietary constituents: United States 1988-94. Vital Heath Stat. 11(245) ed: National Center for Health Statistics , 2002.
9. Markle HV. Cobalamin. Crit Rev Clin Lab Sci 1996;33:247-356. [PubMed abstract]
10. Carmel R. Cobalamin, the stomach, and aging. Am J Clin Nutr 1997;66:750-9. [PubMed abstract]
11. Nourhashemi F, Gillette-Guyonnet S, Andrieu S, Shisolfi A, Ousset PJ, Grandjean H, Grand A, Pous J, Vellas B, Albarede JL. Alzheimer disease: protective factors. Am J of Clinical Nutrition 2000; 71: 643S-9S.
12. Bernard MA, Nakonezny PA, Kashner TM. The effect of vitamin B12 deficiency on older veterans and its relationship to health. J Am Geriatr Soc 1998;46:1199-206. [PubMed abstract]
13. Healton EB, Savage DG, Brust JC, Garrett TF, Lindenbaum J. Neurological aspects of cobalamin deficiency. Medicine 1991;70:229-244. [PubMed abstract]
14. Bottiglieri T. Folate, vitamin B12, and neuropsychiatric disorders. Nutr Rev 1996;54:382-90. [PubMed abstract]
15. Monsen ALB and Ueland PM. Homocysteine and methylmalonic acid in diagnosis and risk assessment from infancy to adolescent. American Journal of Clinical Nutrition 2003; 78:7-21.
16. von Schenck U, Bender-Gotze C, Koletzko B. Persistence of neurological damage induced by dietary vitamin B12 deficiency in infancy. Arch Dis Childhood 1997;77:137-9.
17. Gueant JL, Safi A, Aimone-Gastin I, Rabesona H, Bronowicki J P, Plenat F, Bigard MA, Heartle T. Autoantibodies in pernicious anemia type I patients recognize sequence 251-256 in human intrinsic factor. Proc Assoc Am Physicians 1997;109:462-9. [PubMed abstract]
18. Kapadia CR. Vitamin B12 in health and disease: part I--inherited disorders of function, absorption, and transport. Gastroenterologist 1995;3:329-44. [PubMed abstract]
19. Carmel R. Malabsorption of food cobalamin. Baillieres Clin Haematol 1995;8:639-55. [PubMed abstract]
20. Sumner AE, Chin MM, Abraham JL, Gerry GT, Allen RH, Stabler SP. Elevated methylmalonic acid and total homocysteine levels show high prevalence of vitamin B12 deficiency after gastric surgery. Ann Intern Med 1996;124:469-76. [PubMed abstract]
21. Brolin RE, Gorman JH, Gorman RC, Petschenik A J, Bradley L J, Kenler H A, Cody R P. Are vitamin B12 and folate deficiency clinically important after roux-en-Y gastric bypass? J Gastrointest Surg 1998;2:436-42. [PubMed abstract]
22. Huritz A, Brady DA, Schaal SE, Samloff IM, Dedon J, Ruhl CE. Gastric acidity in older adults. J Am Med Assoc 1997;278:659-62. [PubMed abstract]
23. Andrews GR, Haneman B, Arnold BJ, Booth JC, Taylor K. Atrophic gastritis in the aged. Australas Ann Med 1967;16:230-5. [PubMed abstract]
24. Johnsen R, Bernersen B, Straume B, Forder OH, Bostad L, Burhol PG. Prevalence of endoscopic and histological findings in subjects with and without dyspepsia. Br Med J 1991;302:749-52. [PubMed abstract]
25. Krasinski SD, Russell R, Samloff IM, Jacob RA, Dalal GE, McGandy RB, Hartz SC. Fundic atrophic gastritis in an elderly population: Effect on hemoglobin and several serum nutritional indicators. J Am Geriatr Soc 1986;34:800-6. [PubMed abstract]
26. Carmel R. Prevalence of undiagnosed pernicious anemia in the elderly. Arch Intern Med 1996;156:1097-100. [PubMed abstract]
27. Suter PM, Golner BB, Goldin BR, Morrow FD, Russel RM. Reversal of protein-bound vitamin B12 malabsorption with antibiotics in atrophic gastritis. Gastroenterology 1991; 101:1039-45.
28. Carmel R. Megaloblastic anemias. Curr Opin Hematol 1994;1:107-12. [PubMed abstract]
29. Hutto BR. Folate and cobalamin in psychiatric illness. Comprehensive Psychiatry 1997;38:305-14.
30. Vital Trial Collaborative Group. Effect of vitamins and aspirin on markers of platelet activation, oxidative stress and homocysteine in people at high risk of dementia. Journal of Internal Medicine 2003; 254:67-75.
31. Bradford GS and Taylor CT. Omeprazole and vitamin B12 deficiency. Annals of Pharmacotherapy 1999;33:641-3
32. Kasper H. Vitamin absorption in the elderly. International Journal of Vitamin and Nutrition Research 1999;69:169-72.
33. Howden CW. Vitamin B12 levels during prolonged treatment with proton pump inhibitors. J Clin Gastroenterol 2000;30:29-33.
34. Termanini B, Gibril F, Sutliff VE, Yu F, Venzon DJ, Jensen RT. Effect of Long-Term Gastric Acid Suppressive Therapy on Serum Vitamin B12 Levels in Patients with Zollinger-Ellison Syndrome. American Journal of Medicine 1998; 104: 422-30.
35. Bauman WA, Shaw S, Jayatilleke K, Spungen AM, Herbert V. Increased intake of calcium reverses the B12 malabsorption induced by metformin. Diabetes Care 2000;23:1227-31.
36. Chanarin I. Adverse effects of increased dietary folate. Relation to measures to reduce the incidence of neural tube defects. Clin Invest Med 1994;17:244-52.
37. Third Report of the National Cholesterol Education Program Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III). National Cholesterol Education Program, NationalHeart, Lung, and Blood Institute, National Institues of Health, September 2002. NIH Publication No. 02-5215.
38. Selhub J, Jacques PF, Bostom AG, D'Agostino RB, Wilson PW, Belanger AJ, O'Leary DH, Wolf PA, Scaefer EJ, Rosenberg IH. Association between plasma homocysteine concentrations and extracranial carotid-artery stenosis. N Engl J Med 1995;332:286-91. [PubMed abstract]
39. Rimm EB, Willett WC, Hu FB, Sampson L, Colditz G A, Manson J E, Hennekens C, Stampfer M J. Folate and vitamin B6 from diet and supplements in relation to risk of coronary heart disease among women. J Am Med Assoc 1998;279:359-64. [PubMed abstract]
40. Refsum H, Ueland PM, Nygard O, Vollset SE. Homocysteine and cardiovascular disease. Annu Rev Med 1998;49:31-62. [PubMed abstract]
41. Boers GH. Hyperhomocysteinemia: A newly recognized risk factor for vascular disease. Neth J Med 1994;45:34-41. [PubMed abstract]
42. Selhub J, Jacques PF, Wilson PF, Rush D, Rosenberg IH. Vitamin status and intake as primary determinants of homocysteinemia in an elderly population. J Am Med Assoc 1993;270:2693-8. [PubMed abstract]
43. Malinow MR. Plasma homocyst(e)ine and arterial occlusive diseases: A mini-review. Clin Chem 1995;41:173-6. [PubMed abstract]
44. Flynn MA, Herbert V, Nolph GB, Krause G. Atherogenesis and the homocysteine-folate-cobalamin triad: do we need standardized analyses? J Am Coll Nutr 1997;16:258-67. [PubMed abstract]
45. Fortin LJ, Genest J, Jr. Measurement of homocyst(e)ine in the prediction of arteriosclerosis. Clin Biochem 1995;28:155-62. [PubMed abstract]
46. Siri PW, Verhoef P, Kok FJ. Vitamins B6, B12, and folate: Association with plasma total homocysteine and risk of coronary atherosclerosis. J Am Coll Nutr 1998;17:435-41. [PubMed abstract]
47. Ubbink JB, van der Merwe A, Delport R, Allen R H, Stabler S P, Riezler R, Vermaak WJ. The effect of a subnormal vitamin B6 status on homocysteine metabolism. J Clin Invest 1996;98:177-84. [PubMed abstract]
48. Bronstrup A, Hages M, Prinz-Langenohl R, Pietrzik K. Effects of folic acid and combinations of folic acid and vitamin B12 on plasma homocysteine concentrations in healthy, young women. Am J Clin Nutr 1998;68:1104-10.
49. Clarke R. Lowering blood homocysteine with folic acid based supplements. Brit Med Journal 1998:316: 894-8.
50. McKay DL, Perrone G, Rasmussen H, Dallal G, Blumberg JB. Multivitamin/Mineral Supplementation Improves Plasma B-Vitamin Status and Homocysteine Concentration in Healthy Older Adults Consuming a Folate-Fortified Diet. Journal of Nutrition 2000;130:3090-6.
51. Tucker KL, Rich S, Rosenberg I, Jacques P, Dallal G, Wilson WF, Selhub. J. Plasma vitamin B12 concentrations relate to intake source in the Framingham Offspring Study. Am J Clin Nutr 2000;71:514-22.
52. Dietary Guidelines Advisory Committee, Agricultural Research Service, United States Department of Agriculture (USDA). HG Bulletin No. 232, 2000. http://www.usda.gov/cnpp/DietGd.pdf .
53. Center for Nutrition Policy and Promotion, United Stated Department of Agriculture. Food Guide Pyramid, 1992 (slightly revised 1996). http://www.nal.usda.gov/fnic/Fpyr/pyrami...
My husband is a doctor with a great deal of nutritional training, and he says it's unlikely.|||What is vitamin B12?
Vitamin B12 is also called cobalamin because it contains the metal cobalt. This vitamin helps maintain healthy nerve cells and red blood cells [1-4]. It is also needed to help make DNA, the genetic material in all cells [1-4].
Vitamin B12 is bound to the protein in food. Hydrochloric acid in the stomach releases B12 from proteins in foods during digestion. Once released, vitamin B12 combines with a substance called gastric intrinsic factor (IF). This complex can then be absorbed by the intestinal tract.
What foods provide vitamin B12?
Vitamin B12 is naturally found in animal foods including fish, meat, poultry, eggs, milk, and milk products. Fortified breakfast cereals are a particularly valuable source of vitamin B12 for vegetarians [5-7]. Table 1 lists a variety of food sources of vitamin B12.
Table 1: Selected food sources of vitamin B12 [5]
FoodMicrograms (μg)
per serving Percent
DV*
Mollusks, clam, mixed species, cooked, 3 ounces 84.11400
Liver, beef, braised, 1 slice47.9780
Fortified breakfast cereals, (100%) fortified), ¾ cup6.0100
Trout, rainbow, wild, cooked, 3 ounces5.490
Salmon, sockeye, cooked, 3 ounces4.980
Trout, rainbow, farmed, cooked, 3 ounces4.250
Beef, top sirloin, lean, choice, broiled, 3 ounces2.440
Fast Food, Cheeseburger, regular, double patty %26amp; bun, 1 sandwich1.930
Fast Food, Taco, 1 large1.625
Fortified breakfast cereals (25% fortified), ¾ cup1.525
Yogurt, plain, skim, with 13 grams protein per cup, 1 cup1.425
Haddock, cooked, 3 ounces1.220
Clams, breaded %26amp; fried, ¾ cup1.120
Tuna, white, canned in water, drained solids, 3 ounces1.015
Milk, 1 cup0.915
Pork, cured, ham, lean only, canned, roasted, 3 ounces0.610
Egg, whole, hard boiled, 10.610
American pasteurized cheese food, 1 ounces0.36
Chicken, breast, meat only, roasted, ½ breast0.36
*DV = Daily Value. DVs are reference numbers developed by the Food and Drug Administration (FDA) to help consumers determine if a food contains a lot or a little of a specific nutrient. The DV for vitamin B12 is 6.0 micrograms (μg). Most food labels do not list a food's vitamin B12 content. The percent DV (%DV) listed on the table indicates the percentage of the DV provided in one serving. A food providing 5% of the DV or less is a low source while a food that provides 10-19% of the DV is a good source. A food that provides 20% or more of the DV is high in that nutrient. It is important to remember that foods that provide lower percentages of the DV also contribute to a healthful diet. For foods not listed in this table, please refer to the U.S. Department of Agriculture's Nutrient Database Web site: http://www.nal.usda.gov/fnic/cgi-bin/nut...
What is the recommended dietary intake for vitamin B12?
Recommendations for vitamin B12 are provided in the Dietary Reference Intakes (DRIs) developed by the Institute of Medicine of the National Academy of Sciences [7]. Dietary Reference Intakes is the general term for a set of reference values used for planning and assessing nutrient intake for healthy people. Three important types of reference values included in the DRIs are Recommended Dietary Allowances (RDA), Adequate Intakes (AI), and Tolerable Upper Intake Levels (UL). The RDA recommends the average daily intake that is sufficient to meet the nutrient requirements of nearly all (97-98%) healthy individuals in each age and gender group [7]. An AI is set when there is insufficient scientific data available to establish a RDA. AIs meet or exceed the amount needed to maintain a nutritional state of adequacy in nearly all members of a specific age and gender group [7]. The UL, on the other hand, is the maximum daily intake unlikely to result in adverse health effects [7]. Table 2 lists the RDAs for vitamin B12, in micrograms (μg), for children and adults.
Table 2: Recommended Dietary Allowances (RDA) for vitamin B12 for children and adults [7]
Age
(years)Males and Females
(μg/day) Pregnancy
(μg/day)Lactation
(μg/day)
1-30.9N/AN/A
4-81.2N/AN/A
9-131.8N/AN/A
14-182.42.62.8
19 and older2.42.62.8
There is insufficient information on vitamin B12 to establish a RDA for infants. Therefore, an Adequate Intake (AI) has been established that is based on the amount of vitamin B12 consumed by healthy infants who are fed breast milk [7]. Table 3 lists the Adequate Intakes for vitamin B12, in micrograms (μg), for infants.
Table 3: Adequate Intake for vitamin B12 for infants [7]
Age
(months)Males and Females
(μg/day)
0-6 months0.4
7-12 months0.5
When is a deficiency of vitamin B12 likely to occur?
Results of two national surveys, the National Health and Nutrition Examination Survey (NHANES III-1988-94) [8] and the Continuing Survey of Food Intakes by Individuals (CSFII 1994-96) found that most children and adults in the United States (U.S.) consume recommended amounts of vitamin B12 [6-8]. A deficiency may still occur as a result of an inability to absorb B12 from food and in strict vegetarians who do not consume any animal foods [9]. As a general rule, most individuals who develop a vitamin B12 deficiency have an underlying stomach or intestinal disorder that limits the absorption of vitamin B12 [10]. Sometimes the only symptom of these intestinal disorders is subtly reduced cognitive function resulting from early B12 deficiency. Anemia and dementia follow later [1,11].
# Signs, symptoms, and health problems associated with vitamin B12 deficiencyCharacteristic signs, symptoms, and health problems associated with B12 deficiency include anemia, fatigue, weakness, constipation, loss of appetite, and weight loss [1,3,12].
# Deficiency also can lead to neurological changes such as numbness and tingling in the hands and feet [7,13].
# Additional symptoms of B12 deficiency are difficulty in maintaining balance, depression, confusion, dementia, poor memory, and soreness of the mouth or tongue [14].
# Signs of vitamin B12 deficiency in infancy include failure to thrive, movement disorders, delayed development, and megaloblastic anemia [15].
Many of these symptoms are very general and can result from a variety of medical conditions other than vitamin B12 deficiency. It is important to have a physician evaluate these symptoms so that appropriate medical care can be given.
Do pregnant and/or lactating women need extra Vitamin B12?
During pregnancy, nutrients travel from mother to fetus through the placenta. Vitamin B12, like other nutrients, is transferred across the placenta during pregnancy. Breast-fed infants receive their nutrition, including vitamin B12, through breast milk. Vitamin B12 deficiency in infants is rare but can occur as a result of maternal insufficiency [15]. For example, breast-fed infants of women who follow strict vegetarian diets have very limited reserves of vitamin B12 and can develop a vitamin B12 deficiency within months of birth [7,16]. This is of particular concern because undetected and untreated vitamin B12 deficiency in infants can result in permanent neurologic damage. Consequences of such neurologic damage are severe and can be irreversible. Mothers who follow a strict vegetarian diet should consult with a pediatrician regarding appropriate vitamin B12 supplementation for their infants and children [7]. They should also discuss their own need for vitamin B12 supplementation with their personal physician.
Who else may need a vitamin B12 supplement to prevent a deficiency?
# Individuals with pernicious anemia or with gastrointestinal disorders may benefit from or require a vitamin B12 supplement.
# Older adults and vegetarians may benefit from a vitamin B12 supplement or an increased intake of foods fortified with vitamin B12.
# Some medications may decrease absorption of vitamin B12. Chronic use of those medications may result in a need for supplemental B12.
Individuals with pernicious anemia
Anemia is a condition that occurs when there is insufficient hemoglobin in red blood cells to carry oxygen to cells and tissues. Common signs and symptoms of anemia include fatigue and weakness. Anemia can result from a variety of medical problems, including deficiencies of vitamin B12, vitamin B6, folate and iron. Pernicious anemia is the name given more than a century ago to describe the then-fatal vitamin B12 deficiency anemia that results from severe gastric atrophy, a condition that prevents gastric cells from secreting intrinsic factor. Intrinsic factor is a substance normally present in the stomach. Vitamin B12 must bind with intrinsic factor before it can be absorbed and used by your body [7,17-18]. An absence of intrinsic factor prevents normal absorption of B12 and results in pernicious anemia.
Most individuals with pernicious anemia need parenteral (deep subcutaneous) injections (shots) of vitamin B12 as initial therapy to replenish depleted body B12 stores. Body stores of vitamin B12 can then be managed by a daily oral supplement of B12. A physician will manage the treatment required to maintain the vitamin B12 status of individuals with pernicious anemia.
Individuals with gastrointestinal disorders
Individuals with stomach and small intestinal disorders may be unable to absorb enough vitamin B12 from food to maintain healthy body stores [19]. Intestinal disorders that may result in malabsorption of vitamin B12 include:
* Sprue, often referred to as Celiac Disease (CD), is a genetic disorder. People with CD are intolerant to a protein called gluten. In CD, gluten can trigger damage to the small intestines, where most nutrient absorption occurs. People with CD often experience nutrient malabsorption. They need to follow a gluten free diet to avoid malabsorption and other symptoms of CD.
* Crohn's Disease is an inflammatory bowel disease that affects the small intestines. People with Crohn's disease often experience diarrhea and nutrient malabsorption.
* Surgical procedures in the gastrointestinal tract, such as surgery to remove all or part of the stomach, often result in a loss of cells that secrete stomach acid and intrinsic factor [7,20-21]. Surgical removal of the distal ileum, a section of the intestines, also can result in the inability to absorb vitamin B12. Anyone who has had either of these surgeries usually requires lifelong supplemental B12 to prevent a deficiency. These individuals would be under the routine care of a physician, who would periodically evaluate vitamin B12 status and recommend appropriate treatment.
Older adults
Gastric acid helps release vitamin B12 from the protein in food. This must occur before B12 binds with intrinsic factor and is absorbed in your intestines. Atrophic gastritis, which is an inflammation of the stomach, decreases gastric secretion. Less gastric acid decreases the amount of B12 separated from proteins in foods and can result in poor absorption of vitamin B12 [10,22-26]. Decreased gastric secretion also results in overgrowth of normal bacterial flora in the small intestines. The bacteria may take up vitamin B12 for their own use, further contributing to a vitamin B12 deficiency [27].
Up to 30 percent of adults 50 years and older may have atrophic gastritis, an overgrowth of intestinal flora, and be unable to normally absorb vitamin B12 in food. They are, however, able to absorb the synthetic B12 added to fortified foods and dietary supplements. Vitamin supplements and fortified foods may be the best sources of vitamin B12 for adults over the age of 50 [7].
Researchers have long been interested in the potential connection between vitamin B12 deficiency and dementia [28]. A recent review examined correlations between cognitive skills, homocysteine levels, and blood levels of folate, vitamin B12 and vitamin B6. The authors suggested that vitamin B12 deficiency may decrease levels of substances needed for the metabolism of neurotransmitters [29]. Neurotransmitters are chemicals that transmit nerve signals. Reduced levels of neurotransmitters may result in cognitive impairment. In 142 individuals considered at risk for dementia, researchers found that a daily supplement providing 2 milligrams (mg) folic acid and 1 mg B12, taken for 12 weeks, lowered homocysteine levels by 30%. They also demonstrated that cognitive impairment was significantly associated with elevated plasma total homocysteine. However, the decrease in homocysteine levels seen with vitamin supplementation did not improve cognition [30]. It is too soon to make any recommendations, but is an intriguing area of research.
Vegetarians
The popularity of vegetarian diets has risen along with an interest in avoiding meat and meat products for environmental, philosophical, and health reasons. However, the term vegetarianism is subject to a wide range of interpretations. Some people consider themselves to be vegetarian when they avoid red meat. Others believe that vegetarianism requires avoidance of all animal products, including meat, poultry, fish, eggs, and dairy foods. The most commonly described forms of vegetarianism include:
# "Lacto-ovo vegetarians", who avoid meat, poultry, and fish products but consume eggs and dairy foods
# "Strict vegetarians", who avoid meat, poultry, fish, eggs, and dairy foods
# "Vegans", who avoid meat, poultry, fish, eggs, and dairy foods but also do not use animal products such as honey, leather, fur, silk, and wool
Strict vegetarians and vegans are at greater risk of developing vitamin B12 deficiency than lacto-ovo vegetarians and non-vegetarians because natural food sources of vitamin B12 are limited to animal foods [7]. Fortified cereals are one of the few sources of vitamin B12 from plants, and are an important dietary source of B12 for strict vegetarians and vegans. Strict vegetarians and vegans who do not consume plant foods fortified with vitamin B12 need to consider taking a dietary supplement that contains vitamin B12 and should discuss the need for B12 supplementation with their physician.
There is wide belief that vitamin B12 can be consistently obtained from nutritional yeasts. Consumers should be aware that these products may or may not contain added nutrients such as vitamin B12. Dietary supplements are regulated as foods rather than drugs, and companies that sell supplements such as nutritional yeasts fortified with vitamin B12 can legally change their formulation at any time. If you choose to supplement, select reliable sources of vitamin B12 and read product labels carefully.
When adults adopt a strict vegetarian diet, deficiency symptoms can be slow to appear. It may take years to deplete normal body stores of B12. However, breast-fed infants of women who follow strict vegetarian diets have very limited reserves of vitamin B12 and can develop a vitamin B12 deficiency within months [7]. This is of particular concern because undetected and untreated vitamin B12 deficiency in infants can result in permanent neurologic damage. Consequences of such neurologic damage are severe and can be irreversible. There are many case reports in the literature of infants and children who suffered consequences of vitamin B12 deficiency. It is very important for mothers who follow a strict vegetarian diet to consult with a pediatrician regarding appropriate vitamin B12 supplementation for their infants and children [7].
Drug : Nutrient Interactions
Table 4 summarizes several drugs that potentially influence vitamin B12 absorption.
Table 4: Important vitamin B12/drug interactions
DrugPotential Interaction
# Proton Pump Inhibitors (PPIs) are used to treat gastroesophageal reflux disease (GERD) and peptic ulcer disease. Examples of PPIs are Omeprazole (Prilosec©) and Lansoprazole (Prevacid©)
PPI medications can interfere with vitamin B12 absorption from food by slowing the release of gastric acid into the stomach [31-33]. This is a concern because acid is needed to release vitamin B12 from food prior to absorption. So far, however, there is no evidence that these medications promote vitamin B12 deficiency, even after long-term use [34].
# H2 receptor antagonists are used to treat peptic ulcer disease. Examples are Tagament©, Pepsid©, and Zantac©
H2 receptor antagonists can interfere with vitamin B12 absorption from food by slowing the release of gastric acid into the stomach. This is a concern because acid is needed to release vitamin B12 from food prior to absorption. So far, however, there is no evidence that these medications promote vitamin B12 deficiency, even after long-term use [34].
# Metformin© is a drug used to treat diabetes.
Metformin© may interfere with calcium metabolism [35]. This may indirectly reduce vitamin B12 absorption because vitamin B12 absorption requires calcium [35]. Surveys suggest that from 10% to 30% of patients taking Metformin© have evidence of reduced vitamin B12 absorption [35].
In a study involving 21 subjects with type 2 diabetes, researchers found that 17 who were prescribed Metformin© experienced a decrease in vitamin B12 absorption. Researchers also found that supplementation with calcium carbonate (1200 milligrams per day) helped limit the effect of Metformin© on vitamin B12 absorption in these individuals [35].
Although these medications may interact with the absorption of vitamin B12, they are necessary to take for certain conditions. It is important to consult with a physician and registered dietitian to discuss the best way to maintain vitamin B12 status when taking these medications.
Caution: Folic Acid and vitamin B12 deficiency
Folic acid can correct the anemia that is caused by vitamin B12 deficiency. Unfortunately, folic acid will not correct the nerve damage also caused by B12 deficiency [1,36]. Permanent nerve damage can occur if vitamin B12 deficiency is not treated. Folic acid intake from food and supplements should not exceed 1,000 micrograms (μg) daily in healthy individuals because large amounts of folic acid can trigger the damaging effects of vitamin B12 deficiency [7]. Adults older than 50 years who take a folic acid supplement should ask their physician or qualified health care provider about their need for vitamin B12 supplementation.
What is the relationship between vitamin B12 homocysteine, and cardiovascular disease?
Cardiovascular disease involves any disorder of the heart and blood vessels that make up the cardiovascular system. Coronary heart disease occurs when blood vessels which supply the heart become clogged or blocked, increasing the risk of a heart attack. Vascular damage can also occur to blood vessels supplying the brain, and can result in a stroke.
Cardiovascular disease is the most common cause of death in industrialized countries such as the U.S., and is on the rise in developing countries. The National Heart, Lung, and Blood Institute of the National Institutes of Health has identified many risk factors for cardiovascular disease, including an elevated LDL-cholesterol level, high blood pressure, a low HDL-cholesterol level, obesity, and diabetes [37]. In recent years, researchers have identified another risk factor for cardiovascular disease, an elevated homocysteine level. Homocysteine is an amino acid normally found in blood, but elevated levels have been linked with coronary heart disease and stroke [38-47]. Elevated homocysteine levels may impair endothelial vasomotor function, which determines how easily blood flows through blood vessels. High levels of homocysteine also may damage coronary arteries and make it easier for blood clotting cells called platelets to clump together a form a clot, which may lead to a heart attack [43].
Vitamin B12, folate, and vitamin B6 are involved in homocysteine metabolism. In fact, a deficiency of vitamin B12, folate, or vitamin B6 may increase blood levels of homocysteine. Recent studies found that supplemental vitamin B12 and folic acid decreased homocysteine levels in subjects with vascular disease and in young adult women. The most significant drop in homocysteine level was seen when folic acid was taken alone [48-49]. A significant decrease in homocysteine levels also occurred in older men and women who took a multivitamin/ multimineral supplement for 56 days [50]. The supplement taken provided 100% of Daily Values (DVs) for nutrients in the supplement.
Evidence supports a role for supplemental folic acid and vitamin B12 for lowering homocysteine levels, however this does not mean that these supplements will decrease the risk of cardiovascular disease. Clinical intervention trials are underway to determine whether supplementation with folic acid, vitamin B12, and vitamin B6 can lower risk of coronary heart disease. It is premature to recommend vitamin B12 supplements for the prevention of heart disease until results of ongoing randomized, controlled clinical trials positively link increased vitamin B12 intake from supplements with decreased homocysteine levels AND decreased risk of cardiovascular disease.
Do healthy young adults need a vitamin B12 supplement?
It is generally accepted that older adults are at greater risk of developing a vitamin B12 deficiency than younger adults. One study, however, suggests that the prevalence of B12 deficiency in young adults may be greater than previously thought. This study found that the percentage of subjects in three age groups (26 to 49y, 50 to 64y, and 65y and older) with deficient blood levels of vitamin B12 was similar across all age groups but that symptoms of B12 deficiency were not as apparent in younger adults. This study also suggested that those who did not take a supplement containing vitamin B12 were twice as likely to be B12 deficient as supplement users, regardless of age group. However, non-supplement users who consumed fortified cereal more than 4 times per week did appear to be protected from deficient blood levels of B12. Better tools and standards to diagnose B12 deficiencies are needed to make specific recommendations about the appropriateness of vitamin B12 supplements for younger adults [51].
What is the health risk of too much vitamin B12?
The Institute of Medicine of the National Academy of Sciences did not establish a Tolerable Upper Intake Level for this vitamin because Vitamin B12 has a very low potential for toxicity. The Institute of Medicine states that "no adverse effects have been associated with excess vitamin B12 intake from food and supplements in healthy individuals" [7]. In fact, the Institute recommends that adults over 50 years of age get most of their vitamin B12 from vitamin supplements or fortified food because of the high incidence of impaired absorption of B12 from animal foods in this age group [7].
Selecting a healthful diet
As the 2000 Dietary Guidelines for Americans states, "Different foods contain different nutrients and other healthful substances. No single food can supply all the nutrients in the amounts you need" [52]. For more information about building a healthful diet, refer to the Dietary Guidelines for Americans http://www.usda.gov/cnpp/DietGd.pdf [52] and the US Department of Agriculture's Food Guide Pyramid http://www.nal.usda.gov/fnic/Fpyr/pyrami... [53].
Office of Dietary Supplements logo
NIH Clinical Center logo
About ODS and the NIH Clinical Center
General Safety Advisory
Disclaimer
Print-friendly version
Posted Date:
10/7/2004
Updated:
5/25/2005 6:31 PM
References
1. Herbert V. Vitamin B12 in Present Knowledge in Nutrition. 17th ed. Washington, D.C.: International Life Sciences Institute Press, 1996.
2. Herbert V and Das K. Vitamin B12 in Modern Nutrition in health and disease. 8th ed. Baltimore: Williams %26amp; Wilkins, 1994.
3. Combs G. Vitamin B12 in The Vitamins. New York: Academic Press, Inc, 1992.
4. Zittoun J and Zittoun R. Modern clinical testing strategies in cobalamin and folate deficiency. Sem Hematol 1999;36:35-46. [PubMed abstract]
5. U.S. Department of Agriculture, Agricultural Research Service. 2003. USDA Nutrient Database for Standard Reference, Release 16. Nutrient Data Laboratory Home Page, http://www.nal.usda.gov/fnic/cgi-bin/nut...
6. Subar AF, Krebs-Smith SM, Cook A, Kahle LL. Dietary sources of nutrients among US adults, 1989 to 1991. J Am Diet Assoc 1998;98:537-47. [PubMed abstract]
7. Institute of Medicine. Food and Nutrition Board. Dietary Reference Intakes: Thiamin, riboflavin, niacin, vitamin B6, folate, vitamin B12, pantothenic acid, biotin, and choline. National Academy Press. Washington, DC, 1998.
8. Bialostosky K, Wright JD, Kennedy-Stephenson J, McDowell M, Johnson CL. Dietary intake of macronutrients, micronutrients and other dietary constituents: United States 1988-94. Vital Heath Stat. 11(245) ed: National Center for Health Statistics , 2002.
9. Markle HV. Cobalamin. Crit Rev Clin Lab Sci 1996;33:247-356. [PubMed abstract]
10. Carmel R. Cobalamin, the stomach, and aging. Am J Clin Nutr 1997;66:750-9. [PubMed abstract]
11. Nourhashemi F, Gillette-Guyonnet S, Andrieu S, Shisolfi A, Ousset PJ, Grandjean H, Grand A, Pous J, Vellas B, Albarede JL. Alzheimer disease: protective factors. Am J of Clinical Nutrition 2000; 71: 643S-9S.
12. Bernard MA, Nakonezny PA, Kashner TM. The effect of vitamin B12 deficiency on older veterans and its relationship to health. J Am Geriatr Soc 1998;46:1199-206. [PubMed abstract]
13. Healton EB, Savage DG, Brust JC, Garrett TF, Lindenbaum J. Neurological aspects of cobalamin deficiency. Medicine 1991;70:229-244. [PubMed abstract]
14. Bottiglieri T. Folate, vitamin B12, and neuropsychiatric disorders. Nutr Rev 1996;54:382-90. [PubMed abstract]
15. Monsen ALB and Ueland PM. Homocysteine and methylmalonic acid in diagnosis and risk assessment from infancy to adolescent. American Journal of Clinical Nutrition 2003; 78:7-21.
16. von Schenck U, Bender-Gotze C, Koletzko B. Persistence of neurological damage induced by dietary vitamin B12 deficiency in infancy. Arch Dis Childhood 1997;77:137-9.
17. Gueant JL, Safi A, Aimone-Gastin I, Rabesona H, Bronowicki J P, Plenat F, Bigard MA, Heartle T. Autoantibodies in pernicious anemia type I patients recognize sequence 251-256 in human intrinsic factor. Proc Assoc Am Physicians 1997;109:462-9. [PubMed abstract]
18. Kapadia CR. Vitamin B12 in health and disease: part I--inherited disorders of function, absorption, and transport. Gastroenterologist 1995;3:329-44. [PubMed abstract]
19. Carmel R. Malabsorption of food cobalamin. Baillieres Clin Haematol 1995;8:639-55. [PubMed abstract]
20. Sumner AE, Chin MM, Abraham JL, Gerry GT, Allen RH, Stabler SP. Elevated methylmalonic acid and total homocysteine levels show high prevalence of vitamin B12 deficiency after gastric surgery. Ann Intern Med 1996;124:469-76. [PubMed abstract]
21. Brolin RE, Gorman JH, Gorman RC, Petschenik A J, Bradley L J, Kenler H A, Cody R P. Are vitamin B12 and folate deficiency clinically important after roux-en-Y gastric bypass? J Gastrointest Surg 1998;2:436-42. [PubMed abstract]
22. Huritz A, Brady DA, Schaal SE, Samloff IM, Dedon J, Ruhl CE. Gastric acidity in older adults. J Am Med Assoc 1997;278:659-62. [PubMed abstract]
23. Andrews GR, Haneman B, Arnold BJ, Booth JC, Taylor K. Atrophic gastritis in the aged. Australas Ann Med 1967;16:230-5. [PubMed abstract]
24. Johnsen R, Bernersen B, Straume B, Forder OH, Bostad L, Burhol PG. Prevalence of endoscopic and histological findings in subjects with and without dyspepsia. Br Med J 1991;302:749-52. [PubMed abstract]
25. Krasinski SD, Russell R, Samloff IM, Jacob RA, Dalal GE, McGandy RB, Hartz SC. Fundic atrophic gastritis in an elderly population: Effect on hemoglobin and several serum nutritional indicators. J Am Geriatr Soc 1986;34:800-6. [PubMed abstract]
26. Carmel R. Prevalence of undiagnosed pernicious anemia in the elderly. Arch Intern Med 1996;156:1097-100. [PubMed abstract]
27. Suter PM, Golner BB, Goldin BR, Morrow FD, Russel RM. Reversal of protein-bound vitamin B12 malabsorption with antibiotics in atrophic gastritis. Gastroenterology 1991; 101:1039-45.
28. Carmel R. Megaloblastic anemias. Curr Opin Hematol 1994;1:107-12. [PubMed abstract]
29. Hutto BR. Folate and cobalamin in psychiatric illness. Comprehensive Psychiatry 1997;38:305-14.
30. Vital Trial Collaborative Group. Effect of vitamins and aspirin on markers of platelet activation, oxidative stress and homocysteine in people at high risk of dementia. Journal of Internal Medicine 2003; 254:67-75.
31. Bradford GS and Taylor CT. Omeprazole and vitamin B12 deficiency. Annals of Pharmacotherapy 1999;33:641-3
32. Kasper H. Vitamin absorption in the elderly. International Journal of Vitamin and Nutrition Research 1999;69:169-72.
33. Howden CW. Vitamin B12 levels during prolonged treatment with proton pump inhibitors. J Clin Gastroenterol 2000;30:29-33.
34. Termanini B, Gibril F, Sutliff VE, Yu F, Venzon DJ, Jensen RT. Effect of Long-Term Gastric Acid Suppressive Therapy on Serum Vitamin B12 Levels in Patients with Zollinger-Ellison Syndrome. American Journal of Medicine 1998; 104: 422-30.
35. Bauman WA, Shaw S, Jayatilleke K, Spungen AM, Herbert V. Increased intake of calcium reverses the B12 malabsorption induced by metformin. Diabetes Care 2000;23:1227-31.
36. Chanarin I. Adverse effects of increased dietary folate. Relation to measures to reduce the incidence of neural tube defects. Clin Invest Med 1994;17:244-52.
37. Third Report of the National Cholesterol Education Program Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III). National Cholesterol Education Program, NationalHeart, Lung, and Blood Institute, National Institues of Health, September 2002. NIH Publication No. 02-5215.
38. Selhub J, Jacques PF, Bostom AG, D'Agostino RB, Wilson PW, Belanger AJ, O'Leary DH, Wolf PA, Scaefer EJ, Rosenberg IH. Association between plasma homocysteine concentrations and extracranial carotid-artery stenosis. N Engl J Med 1995;332:286-91. [PubMed abstract]
39. Rimm EB, Willett WC, Hu FB, Sampson L, Colditz G A, Manson J E, Hennekens C, Stampfer M J. Folate and vitamin B6 from diet and supplements in relation to risk of coronary heart disease among women. J Am Med Assoc 1998;279:359-64. [PubMed abstract]
40. Refsum H, Ueland PM, Nygard O, Vollset SE. Homocysteine and cardiovascular disease. Annu Rev Med 1998;49:31-62. [PubMed abstract]
41. Boers GH. Hyperhomocysteinemia: A newly recognized risk factor for vascular disease. Neth J Med 1994;45:34-41. [PubMed abstract]
42. Selhub J, Jacques PF, Wilson PF, Rush D, Rosenberg IH. Vitamin status and intake as primary determinants of homocysteinemia in an elderly population. J Am Med Assoc 1993;270:2693-8. [PubMed abstract]
43. Malinow MR. Plasma homocyst(e)ine and arterial occlusive diseases: A mini-review. Clin Chem 1995;41:173-6. [PubMed abstract]
44. Flynn MA, Herbert V, Nolph GB, Krause G. Atherogenesis and the homocysteine-folate-cobalamin triad: do we need standardized analyses? J Am Coll Nutr 1997;16:258-67. [PubMed abstract]
45. Fortin LJ, Genest J, Jr. Measurement of homocyst(e)ine in the prediction of arteriosclerosis. Clin Biochem 1995;28:155-62. [PubMed abstract]
46. Siri PW, Verhoef P, Kok FJ. Vitamins B6, B12, and folate: Association with plasma total homocysteine and risk of coronary atherosclerosis. J Am Coll Nutr 1998;17:435-41. [PubMed abstract]
47. Ubbink JB, van der Merwe A, Delport R, Allen R H, Stabler S P, Riezler R, Vermaak WJ. The effect of a subnormal vitamin B6 status on homocysteine metabolism. J Clin Invest 1996;98:177-84. [PubMed abstract]
48. Bronstrup A, Hages M, Prinz-Langenohl R, Pietrzik K. Effects of folic acid and combinations of folic acid and vitamin B12 on plasma homocysteine concentrations in healthy, young women. Am J Clin Nutr 1998;68:1104-10.
49. Clarke R. Lowering blood homocysteine with folic acid based supplements. Brit Med Journal 1998:316: 894-8.
50. McKay DL, Perrone G, Rasmussen H, Dallal G, Blumberg JB. Multivitamin/Mineral Supplementation Improves Plasma B-Vitamin Status and Homocysteine Concentration in Healthy Older Adults Consuming a Folate-Fortified Diet. Journal of Nutrition 2000;130:3090-6.
51. Tucker KL, Rich S, Rosenberg I, Jacques P, Dallal G, Wilson WF, Selhub. J. Plasma vitamin B12 concentrations relate to intake source in the Framingham Offspring Study. Am J Clin Nutr 2000;71:514-22.
52. Dietary Guidelines Advisory Committee, Agricultural Research Service, United States Department of Agriculture (USDA). HG Bulletin No. 232, 2000. http://www.usda.gov/cnpp/DietGd.pdf .
53. Center for Nutrition Policy and Promotion, United Stated Department of Agriculture. Food Guide Pyramid, 1992 (slightly revised 1996). http://www.nal.usda.gov/fnic/Fpyr/pyrami...
Help with my dogs skin rash?
My dog has a rash on his belly, I believe it is an allergic reaction to grass (he is a lab mix and they often have allergies to grass) I was wondering if anyone knew of any over the counter remedies to help with the itching.|||Skin Works or Ivy Dry are both good topical applications. They both work well for hot spots too.
For any type of skin allergies though, you should treat from the inside as well as the outside. Do some research on supplements, such as Salmon Oil, that help with skin and coat condition. Your vet will be a good resource for that and shouldn't charge for a phone call.
Have you done any testing to see if switching his food might help? He may be allergic to any grain products in his food as well if you really do think it's grass causing this problem.
Hope your boy feels better soon!|||My dog also had a belly rash. When we went to the vet she said it was from allergies and from different rugs and carpets. If you go to the vet they can give you a spray that you use on their bellies and you will notice a difference in about a week!
Best of luck!!|||your dogs skin is probably just dry, if you wash him too much that can do it, but try going to a pet store and picking up some doggie lotion|||During the summer, my dog, who has never had any allergy problems, got very itchy feet. She was chewing on her feet all of the time and they were red between the toes. I called the vet and was told about Omega 3 supplements that help with itching and inflammation. The vet had a product in a bottle that you pumped onto their food or in the case of my dog, I put it in the palm of my hand and she licked it off my hand. Within a week, the itching went away and has not come back. I was totally amazed and very happy that I did not have to go the cortisone route. Call and ask the vet about Omega 3 supplements and itchy rashes and see what he says.|||My hairless dog was suffering from allergies %26amp; itching. I took him to my vet and was told to give him Benedryl, you may want to check with a vet on the dosage as it goes by their weight. I used the childrens Benedryl as it is not as strong as the adults.|||over the counter benadryl is suitable for dogs with allergies, call your vet for dosing amounts. My 50lb boxer gets 50mg of benadryl 3 times a day.
If the allergies are more than occasional you can have your vet prescribe a prescription antihistamine. I have used Atarax with my dog in the past and now she is on prednisone. The prednisone actually comes out cheaper than the benadryl. We get 30 pills for $18 and she only needs it every few days, one prescription usually lasts 2-3 months.
For any type of skin allergies though, you should treat from the inside as well as the outside. Do some research on supplements, such as Salmon Oil, that help with skin and coat condition. Your vet will be a good resource for that and shouldn't charge for a phone call.
Have you done any testing to see if switching his food might help? He may be allergic to any grain products in his food as well if you really do think it's grass causing this problem.
Hope your boy feels better soon!|||My dog also had a belly rash. When we went to the vet she said it was from allergies and from different rugs and carpets. If you go to the vet they can give you a spray that you use on their bellies and you will notice a difference in about a week!
Best of luck!!|||your dogs skin is probably just dry, if you wash him too much that can do it, but try going to a pet store and picking up some doggie lotion|||During the summer, my dog, who has never had any allergy problems, got very itchy feet. She was chewing on her feet all of the time and they were red between the toes. I called the vet and was told about Omega 3 supplements that help with itching and inflammation. The vet had a product in a bottle that you pumped onto their food or in the case of my dog, I put it in the palm of my hand and she licked it off my hand. Within a week, the itching went away and has not come back. I was totally amazed and very happy that I did not have to go the cortisone route. Call and ask the vet about Omega 3 supplements and itchy rashes and see what he says.|||My hairless dog was suffering from allergies %26amp; itching. I took him to my vet and was told to give him Benedryl, you may want to check with a vet on the dosage as it goes by their weight. I used the childrens Benedryl as it is not as strong as the adults.|||over the counter benadryl is suitable for dogs with allergies, call your vet for dosing amounts. My 50lb boxer gets 50mg of benadryl 3 times a day.
If the allergies are more than occasional you can have your vet prescribe a prescription antihistamine. I have used Atarax with my dog in the past and now she is on prednisone. The prednisone actually comes out cheaper than the benadryl. We get 30 pills for $18 and she only needs it every few days, one prescription usually lasts 2-3 months.
What is this skin rash on my rat??
I keep my 3 male rats in a 3 story cage. We clean it once a week and it never smells. I looked at one of the boys tonight and noticed that he has a weird looking skin spot on his stomach so I held him down and took a wash cloth and washed it off, but it started to smell and pus when I did this!!!! I feel so bad if I did that to my baby boy!! I’m going to start treating him with Neosporin and clean it off 3 times a day, but has anyone heard of this? By the way they never fight so I don’t think it’s from getting bit. If it gets any worse I’m going to have a vet look at it. Thanks!|||oh poor Ratty!
I can understand why you are worried.
It sounds like the vet will need to do a skin scraping to determine if its fungal or parasite. If you are unlucky there might be an abcess under his skin and you're just seeing the top of it. An abcess would need to be lanced and cleaned by a vet and then he'd be treated with antibiotics. Be very careful of what you put on his skin ,as you know he will try to lick it off.
Best wishes. :o)|||P.S. Bex-Chan you did try to help! Thank you for that! Report It
|||Thanks for the vote phoenix_rosemaryhitz. :o) I hope your little guy is better soon. Whats with with all the negative answers? I'd recommend a pet rat any day. :o) Report It
|||he is sick|||Rats are poisonous. Why do you keep rats as pets? I don't understand why people keep rodents and snakes and weird things that should be exterminated as pets.|||ok hate to be the bearer of bad news but there was a recent outbreak of scabes in rats and ,many in my pet shop were affected. Isolate him from the other(always wear gloves) and take him to the vets. It could be just a scab in which case they'll give you Fuciderm which you apply once a day to the area. Good luck|||that's probably a new kind of super deadly virus that u %26amp; ur rats just created. u better give it to someone u hate most or u can let it loose in ur neighbourhood so u can share it with the folks.|||Plague, is caused by bacteria called Yersinia pestis. Onset of plague is usually 2 to 6 days after a person is exposed. Initial symptoms include fever, headache, and general illness, followed by the development of painful, swollen regional lymph nodes. The disease progresses rapidly and the bacteria can invade the bloodstream, producing severe illness, called plague septicemia. Once a human is infected, a progressive illness generally results unless specific antibiotic therapy is given. Progression leads to blood infection and, finally, to lung infection. The infection of the lung is termed plague pneumonia, and it can be transmitted to others through the expulsion of droplets by coughing. The incubation period of primary pneumonic plague is 1 to 3 days and is characterized by development of an overwhelming pneumonia with high fever, cough, bloody sputum, and chills. For plague pneumonia patients, the death rate is over 50%.
Geographic Distribution of Plague
In the United States, most of the human plague cases occur in two regions:
Northern New Mexico, northern Arizona, and southern Colorado.
California, southern Oregon, and far western Nevada.
How Is Plague Transmitted?
Plague is transmitted from animal to animal and from animal to human by the bites of infective fleas. Less frequently, the organism enters through a break in the skin by direct contact with tissue or body fluids of a plague-infected animal, for instance, in the process of skinning a rabbit or other infected animal. Plague is also transmitted by inhaling infected droplets expelled by coughing, by a person or animal, especially domestic cats, with pneumonic plague. Transmission of plague from person to person is uncommon and has not been observed in the United States since 1924 but does occur as an important factor in plague epidemics in some developing countries.
Human plague cases in the U.S. have been sporadic cases acquired from wild rodents or their fleas. Rock squirrels and their fleas are the most frequent sources of human infection in the southwestern states. For the Pacific states, the California ground squirrel and its fleas are the most common source. Many other rodent species, for instance, prairie dogs, wood rats, chipmunks, and other ground squirrels and their fleas, suffer plague outbreaks and some of these occasionally serve as sources of human infection. Deer mice and voles are thought to maintain the disease in animal populations but are less important as sources of human infection. Other less frequent sources of infection include wild rabbits, wild carnivores, and even antelopes, which pick up their infections from wild rodent outbreaks. Domestic cats (and sometimes dogs) are readily infected by fleas or from eating infected wild rodents. Cats may serve as a source of infection to persons exposed to them. Pets may also bring plague-infected fleas into the home. Between outbreaks, the plague bacterium is believed to circulate within populations of certain species of rodents without causing excessive mortality. Such groups of infected animals serve as silent, long-term reservoirs of infection.
Prevention
Plague will probably continue to exist in its many localized geographic areas in the southwest since attempts to eliminate wild rodent plague are impractical and futile. Therefore, primary preventive measures are directed toward reducing the threat of infection in humans in high risk areas through three techniques:
Environmental management
Public health education
Preventive drug therapy
Environmental Management
Preventing epidemic plague requires the reducing or eliminating house rat populations in both urban and rural areas.
Control of plague in such situations requires two things:
Close surveillance for human plague cases, and for plague in rodents.
Use of an effective insecticide to control rodent fleas when human plague cases and rodent outbreaks occur.
Public Health Education
In regions such as the American West where plague is widespread in wild rodents, the greatest threat is to people living, working, or playing in areas where the infection is active. Public health education of citizens and the medical community should include information on the following plague prevention measures:
Eliminating of food and shelter for rodents around homes, work places, and recreation areas by removing brush, rock piles, junk, and food sources (such as pet food), from the site.
Surveillance for plague activity in rodent populations in and surrounding high risk areas by public health workers or by citizens reporting rodents found sick or dead to local health departments.
Use of appropriate and licensed insecticides to kill fleas during wild animal plague outbreaks to reduce the risk to humans.
Treatment of pets (dogs and cats) for flea control once each week.
Preventive Drug Therapy
Antibiotics may be taken in the event of exposure to the bites of wild rodent fleas during an outbreak or to the tissues or fluids of a plague-infected animal. Preventive therapy is also recommended in the event of close exposure to another person or to a pet animal with suspected plague pneumonia. For preventive drug therapy, the preferred antibiotics are the tetracyclines, chloramphenicol, or one of the effective sulfonamides.
I can understand why you are worried.
It sounds like the vet will need to do a skin scraping to determine if its fungal or parasite. If you are unlucky there might be an abcess under his skin and you're just seeing the top of it. An abcess would need to be lanced and cleaned by a vet and then he'd be treated with antibiotics. Be very careful of what you put on his skin ,as you know he will try to lick it off.
Best wishes. :o)|||P.S. Bex-Chan you did try to help! Thank you for that! Report It
|||Thanks for the vote phoenix_rosemaryhitz. :o) I hope your little guy is better soon. Whats with with all the negative answers? I'd recommend a pet rat any day. :o) Report It
|||he is sick|||Rats are poisonous. Why do you keep rats as pets? I don't understand why people keep rodents and snakes and weird things that should be exterminated as pets.|||ok hate to be the bearer of bad news but there was a recent outbreak of scabes in rats and ,many in my pet shop were affected. Isolate him from the other(always wear gloves) and take him to the vets. It could be just a scab in which case they'll give you Fuciderm which you apply once a day to the area. Good luck|||that's probably a new kind of super deadly virus that u %26amp; ur rats just created. u better give it to someone u hate most or u can let it loose in ur neighbourhood so u can share it with the folks.|||Plague, is caused by bacteria called Yersinia pestis. Onset of plague is usually 2 to 6 days after a person is exposed. Initial symptoms include fever, headache, and general illness, followed by the development of painful, swollen regional lymph nodes. The disease progresses rapidly and the bacteria can invade the bloodstream, producing severe illness, called plague septicemia. Once a human is infected, a progressive illness generally results unless specific antibiotic therapy is given. Progression leads to blood infection and, finally, to lung infection. The infection of the lung is termed plague pneumonia, and it can be transmitted to others through the expulsion of droplets by coughing. The incubation period of primary pneumonic plague is 1 to 3 days and is characterized by development of an overwhelming pneumonia with high fever, cough, bloody sputum, and chills. For plague pneumonia patients, the death rate is over 50%.
Geographic Distribution of Plague
In the United States, most of the human plague cases occur in two regions:
Northern New Mexico, northern Arizona, and southern Colorado.
California, southern Oregon, and far western Nevada.
How Is Plague Transmitted?
Plague is transmitted from animal to animal and from animal to human by the bites of infective fleas. Less frequently, the organism enters through a break in the skin by direct contact with tissue or body fluids of a plague-infected animal, for instance, in the process of skinning a rabbit or other infected animal. Plague is also transmitted by inhaling infected droplets expelled by coughing, by a person or animal, especially domestic cats, with pneumonic plague. Transmission of plague from person to person is uncommon and has not been observed in the United States since 1924 but does occur as an important factor in plague epidemics in some developing countries.
Human plague cases in the U.S. have been sporadic cases acquired from wild rodents or their fleas. Rock squirrels and their fleas are the most frequent sources of human infection in the southwestern states. For the Pacific states, the California ground squirrel and its fleas are the most common source. Many other rodent species, for instance, prairie dogs, wood rats, chipmunks, and other ground squirrels and their fleas, suffer plague outbreaks and some of these occasionally serve as sources of human infection. Deer mice and voles are thought to maintain the disease in animal populations but are less important as sources of human infection. Other less frequent sources of infection include wild rabbits, wild carnivores, and even antelopes, which pick up their infections from wild rodent outbreaks. Domestic cats (and sometimes dogs) are readily infected by fleas or from eating infected wild rodents. Cats may serve as a source of infection to persons exposed to them. Pets may also bring plague-infected fleas into the home. Between outbreaks, the plague bacterium is believed to circulate within populations of certain species of rodents without causing excessive mortality. Such groups of infected animals serve as silent, long-term reservoirs of infection.
Prevention
Plague will probably continue to exist in its many localized geographic areas in the southwest since attempts to eliminate wild rodent plague are impractical and futile. Therefore, primary preventive measures are directed toward reducing the threat of infection in humans in high risk areas through three techniques:
Environmental management
Public health education
Preventive drug therapy
Environmental Management
Preventing epidemic plague requires the reducing or eliminating house rat populations in both urban and rural areas.
Control of plague in such situations requires two things:
Close surveillance for human plague cases, and for plague in rodents.
Use of an effective insecticide to control rodent fleas when human plague cases and rodent outbreaks occur.
Public Health Education
In regions such as the American West where plague is widespread in wild rodents, the greatest threat is to people living, working, or playing in areas where the infection is active. Public health education of citizens and the medical community should include information on the following plague prevention measures:
Eliminating of food and shelter for rodents around homes, work places, and recreation areas by removing brush, rock piles, junk, and food sources (such as pet food), from the site.
Surveillance for plague activity in rodent populations in and surrounding high risk areas by public health workers or by citizens reporting rodents found sick or dead to local health departments.
Use of appropriate and licensed insecticides to kill fleas during wild animal plague outbreaks to reduce the risk to humans.
Treatment of pets (dogs and cats) for flea control once each week.
Preventive Drug Therapy
Antibiotics may be taken in the event of exposure to the bites of wild rodent fleas during an outbreak or to the tissues or fluids of a plague-infected animal. Preventive therapy is also recommended in the event of close exposure to another person or to a pet animal with suspected plague pneumonia. For preventive drug therapy, the preferred antibiotics are the tetracyclines, chloramphenicol, or one of the effective sulfonamides.
Subscribe to:
Posts (Atom)